This limits greatly the possible range of your factorial function.
这大地限制了阶函数的可能范。
声明:以上例句、词性分类均由互联网资源自动生成,部分未经过人工审核,其表达内容亦不代表本软件的观点;若发现问题,欢迎向我们指正。
The reason this is so complicated is because of a mathematical principle called Factorials.
它之所以如此复杂,因为这一数学原理。
Instead of factorial time, it takes linear time.
它时间, 而线性时间。
So k factorial could be written as k times k minus 1 factorial.
所以 k 以写成 k 以 k 减 1 。
If this was 7 over 7 minus 2 factorial we would have 7 times 6.
如果这 7 除 7 减 2 ,我们将有 7 以 6。
That means there are 6.24 times 10 to the 18th electrons for every negative Coulomb!
这意味着有 6。24 每个电子的 10 到 18 次方!
So this could be rewritten as k times k minus 1 factorial.
所以这以改写为 k k 减 1 。
And here we can make a little bit of a simplification because what's k divided by k factorial?
在这里我们以稍微简化一下,因为 k 除以 k 的多少?
So we could rewrite n factorial using the same trick up here.
所以我们以在这里使用相同的技巧重写 n 。
That's all this factorial stuff here.
这就所有这些的东西。
Times n minus k factorial times p to the k times 1 minus p to the n minus k.
以 n 减 k p 到 k 以 1 减 p 到 n 减 k。
So we'll take the factorial of 6 and we'll divide it by-- put a parentheses here.
所以我们将取 6 的,然后将它除以 -- 在这里放一个括号。
5 factorial is 5 times 4 times 3 times 2 times 1.
55以4以3以2以1。
If this had 3 we would do 3 factorial, and I'll show you how that can happen.
如果它有 3,我们会做 3 个,我会告诉你这如何发生的。
That's n factorial over n minus k factorial times k factorial.
这 n n 减去 k 以 k 。
And as you'll see it's actually 2 factorial ways that it can happen.
正如您将看到的,它实际上以通过两种方式发生。
And actually, it turns out that it's 2 factorial.
实际上,它 2 的。
Divided by 2 factorial times e to the minus 9 power.
除以 2 e 的负 9 次方。
So if I just want 5 times 4 what I can do is I divide 5 factorial divided by 3 factorial.
因此,如果我只想要 5 以 4,我以将 5 除以 3 。
So times lambda to the k k over k factorial.
所以以 lambda 到 k k 。
So it's a factorial of how many we're choosing from, how many shots we're taking, and the Excel function for that is fact.
所以它我们从中选择的数量、我们拍摄的照片数量的, 而 Excel 函数就事实。
关注我们的微信
下载手机客户端
划词翻译
详细解释